SIDDARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road - 517583 **OUESTION BANK (DESCRIPTIVE)** Subject with Code: NUMERICAL METHODS ANDTRANSFORMS (19HS0834) Branch: B.Tech. (ECE) Year &Sem: II-B.Tech. & I-Sem.Regulation: R19 UNIT –I 1. Find out the square root of 25 given $x_0 = 2.0$, $x_1 = 7.0$ using Bisection method. 2. Find a positive root $fx^3 - x - 1 = 0$ correct to two decimal places by Bisection method. 3. Find a positive root $f(x) = e^x - 3$ correct to two decimal places by Bisection method. 4. Find a real root of the equation $xe^{x} - \cos x = 0$ using Newton – Raphson method. 5.Using Newton-Raphson method (i)Find square rootof 28(ii)Find cube rootof 15. [12M]

6.a)Using Newton-Raphson method Find reciprocal of 12.

b) Find a real root of the equation x tan x + 1 = 0 using Newton – Raphson method. [6M]

7. Find out the root of the equation $x \log_{10}(x) = 1.2 u \sin \beta$ also position method. [12M]

8. Find the root of the equation $xe^x = 2using Regula - falsi method.$

0.15

9.From the following table values of x and y = tan x. Interpolate values of y when x=0.12 and x=0.28.

0.25 0.30

у

0.20

10.a) Using Newton's forward interpolation formulaand the given table ofvalues

x	1.1	1.3	1.5	1.7	1.9
f(x)	0.21	0.69	1.25	1.89	2.61

Obtain the value of f(x) when x=1.4.

x 0.10

b) Use Newton's backward interpolation formula to find f(32) given f(25)=0.2707, f(30)=0.3027,

$$f(35)=0.3386, f(40)=0.3794.$$

QUESTIONBANK

[12M]

[12M]

[12M]

[12M]

[6M]

Page 1

[6M]

[6M]

[Type text]

QUESTIONBANK 2020

[Type text] QUESTIONBANK	2020					
Subject with Code: NUMERICAL METHODS ANDTRANSFORMS (19HS0834)						
Branch: B.Tech. (ECE) Year & Sem: II-B.Tech. & I-Sem.Regulation: R19						
1. a) Find the Laplace transform of $f(t) = e^{3t} - 2e^{-2t} + \sin 2t + \cos 3t + \sinh 3t - 2\cosh 4t + 9$. [6M]						
b)Find the Laplace transform of $f(t) = \cosh at \sin bt$.	[6M]					
2. a) Find the Laplace transform of $f(t) = \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3$.	[6M]					
b) Find the Laplace transform of $f(t) = e^{4t} \sin 2t \cos t$.	[6M]					
3. a) Find the Laplace transform of $f(t) = t^2 e^{2t} \sin 3t$.	[6M]					
b) Find the Laplace transform of $f(t) = \frac{1 - \cos at}{t}$.	[6M]					
4.a) Find the Laplace transform of $f(t) = \int_{0}^{t} e^{-t} \cos t dt$.	[6M]					
b) Find the Laplace transform of $f(t) = e^{-4t} \int_{0}^{t} \frac{\sin 3t}{t} dt$.	[6M]					
5. a)Show that $\int_{0}^{\infty} t^2 e^{-4t} \cdot \sin 2t dt = \frac{11}{500}$, UsingLaplace transform. [6M	[]					
b) UsingLaplace transform, evaluate $\int_{0}^{\infty} \frac{\cos at - \cos bt}{t} dt$. [6]	M]					
6. a) Find $L^{-1}\left\{\frac{3s-2}{s^2-4s+20}\right\}$ by using first shifting theorem.	[6M]					
b) Find $L^{-1}\left\{\log\left(\frac{s-a}{s-b}\right)\right\}$	[6M]					
7. a) Find $L^{-1}\left\{\frac{1}{\left(s^2+5^2\right)^2}\right\}$, using Convolution theorem.	[6M]					
b) Find $L^{-1}\left\{\frac{s^2}{\left(s^2+4\right)\left(s^2+25\right)}\right\}$, using Convolution theorem. [6M	[]					
8. a) Find the Inverse Laplace transform of $\frac{1}{s(s^2 + a^2)}$	[6M]					
b) Find $L^{-1}\left\{s\log\left(\frac{s-1}{s+1}\right)\right\}$ [6M	[]					
9. Using Laplace transform method to solve $y^{11} - 3y^1 + 2y = 4t + e^{3t}$ where $y(0) = 1, y^1(0) = 1$	1 [12M]					
10. Solve the D.E. $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 3te^{-t}$ using Laplace Transform given that						
$x(0) = 4; \frac{dx}{dt} = 0.at, t = 0$	[12M]					

NUMERICAL METHODS AND TRANSFORMS

[Type text]

QUESTIONBANK 202

2020

NUMERICAL METHODS AND TRANSFORMS

[Type text]

2020

SIDDARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 OUESTION BANK (DESCRIPTIVE)						
Subject with Code: NUMERICAL METHODS ANDTRANSFORMS (19HS0834)						
Brancn: B. Lech. (ECE) Year & Sem: II-B. Tech. & I-Sem. Regulation: R19						
$\frac{\mathbf{UNIT} - \mathbf{V}}{(1 \cdot \mathbf{x} < a)}$						
1. Find the Fourier transform of $f(x) = \begin{cases} 1 \\ 0, x > a \end{cases}$ and hence evaluate						
$i) \int_{-\infty}^{\infty} \frac{\sin ap \ \cos px}{p} dp \ ii) \int_{-\infty}^{\infty} \frac{\sin p}{p} dp \ iii) \int_{0}^{\infty} \frac{\sin p}{p} dp. $ [12M]						
2. Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, x < a \\ 0, x > a > 0 \end{cases}$ Hence show that $\int_{0}^{\infty} \frac{\sin x - x \cos x}{x^3} dx = \frac{\pi}{2}$	<u>.</u> [12M]					
3. a) Find the Fourier transform of $f(x) = e^{-\frac{1}{2}}, -\infty < x < \infty$ [6M]						
b) If $F(p)$ is the complex Fourier transform of $f(x)$, then prove that the complex Fourier tran	sform					
of f(x)=cosax is $\frac{1}{2}[F(p+a)+F(p-a)]$ [6M]						
4. a) Find the Fourier cosine transform of $f(x)$ defined by $f(x) = \begin{cases} cosx & ; 0 < x < a \\ 0 & ; x \ge a \end{cases}$ [6M]						
b) If F(P) is the complex Fourier transform of $f(x)$, then prove that the complex Fourier transform of $F{f(x-a)} = e^{ipa} \cdot F(P)$	orm					
5. Find the Fourier sine and cosine transforms of $f(x) = \frac{e^{-ax}}{a}$ and deduce that						
$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \sin sx dx = \tan^{-1}\left(\frac{s}{a}\right) - \tan^{-1}\left(\frac{s}{b}\right).$	[12M]					
6. Find the Fourier sine and cosine transforms of $f(x) = e^{-ax}$, $a > 0$ and hence deduce the integrals	[12M]					
(i) $\int_{0}^{\infty} \frac{p \sin px}{a^{2} + p^{2}} dp$ (ii) $\int_{0}^{\infty} \frac{\cos px}{a^{2} + p^{2}} dp$						
7. a) Prove that F[$x^n f(x)$] = $(-i)^n \frac{d^n}{dp^n} [F(p)]$	[6M]					
b) Prove that $F_s \{ x f(x) \} = -\frac{d}{dp} [F_c(p)]$	[6M]					
8. a) Find the Fourier cosine transform of $e^{-ax} \cos ax, a > 0$	[6M]					
$\begin{bmatrix} x, for \ 0 < x < 1 \end{bmatrix}$						
b) Find the Fourier cosine transform of $f(x) = \left\{2 - x, \text{ for } 1 < x < 2\right\}$						
$\left[0, for \ x > 2\right]$	[6M]					
9. Find the finite Fourier sine and cosine transform of $f(x)$ defined by $f(x) = 2x$ where $0 < x$	< 2 π. [12M]					
10.a) Find the finite Fourier sine transform of f(x), defined by $f(x) = \begin{cases} x, \ 0 \le x \le \frac{\pi}{2} \\ \pi - x, \ \frac{\pi}{2} \le x \le \pi \end{cases} $ [6M]						
b) Find the inverse finite Fourier sine transform of f(x), If $F_s(n) = \frac{16(-1)^{n-1}}{n^{-3}}$, where n is a						
positive integer and $0 < x < 8$. [6M]						
NUMERICAL METHODS AND TRANSFORMS	Page 5					