SIDDARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: NUMERICAL METHODS ANDTRANSFORMS (19HS0834)
Branch: B.Tech. (ECE) Year \&Sem: II-B.Tech. \& I-Sem.Regulation: R19

UNIT -I

1. Find out the square root of 25 given $x_{0}=2.0, x_{1}=7.0$ using Bisection method.
2. Find a positive rootof $x^{3}-x-1=0$ correct to two decimal places byBisectionmethod.
3. Find a positive rootof $f(x)=\mathrm{e}^{\mathrm{x}}-3$ correct to two decimal places by Bisection method.
4.Find a real root of theequation $x e^{x}-\cos x=0$ using Newton - Raphson method.
5.Using Newton-Raphson method (i)Find square rootof 28(ii)Find cube rootof 15. [12M]
6.a)Using Newton-Raphson method Find reciprocal of 12.
b) Find a real root of theequation $x \tan x+1=0$ using Newton - Raphson method. [6M]
7.Find out the root of theequation $x \log _{10}(x)=1.2$ usingFalsepositionmethod.
4. Find the root of theequation $x e^{x}=2$ usingRegula-falsi method.
9.From the following table values ofxandy $=\tan x$. Interpolate values of y when $x=0.12$ and $x=0.28$.

x	0.10	0.15	0.20	0.25	0.30
y	0.1003	0.1511	0.2027	0.2553	20.3093

10.a) Using Newton's forward interpolation formulaand the given table ofvalues

x	1.1	1.3	1.5	1.7	1.9
$f(x)$	0.21	0.69	1.25	1.89	2.61

Obtain the value of $f(x)$ when $x=1.4$.
b) Use Newton's backward interpolation formula to find $f(32)$ given $f(25)=0.2707, f(30)=0.3027$,
$f(35)=0.3386, f(40)=0.3794$.
[6M]

SIDDARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: NUMERICAL METHODS ANDTRANSFORMS (19HS0834)

Branch: B.Tech. (ECE)
Year \&Sem: II-B.Tech. \& I-Sem.Regulation: R19

UNIT -II

1. Tabulate $\mathrm{y}(0.1), \mathrm{y}(0.2)$ and $\mathrm{y}(0.3)$ using Taylor's series method

$$
\begin{equation*}
\text { given that } y^{1}=y^{2}+x \text { and } y(0)=1 \tag{12M}
\end{equation*}
$$

2. Using Taylor's series method find an approximate value of y at $\mathrm{x}=0.2$ for the
D. $\mathrm{Ey}^{1}-2 \mathrm{y}=3 \mathrm{e}^{\mathrm{x}}, \mathrm{y}(0)=0$.Compare the numerical solution obtained with exact solution.[12M]
3. a)Solve $y^{1}=x+y$, given $y(1)=0$ find $y(1.1)$ and $y(1.2)$ by Taylor's series method. [6M]
b) Solve by Euler's method $\frac{d y}{d x}=\frac{2 y}{x}$ given $\mathrm{y}(1)=2$ and find $\mathrm{y}(2)$
4.Using Euler's method, find an approximate value of y corresponding to $x=1$ given that

$$
\frac{d y}{d x}=x+y \text { and } y=1 \text { when } x=0 \text { taking step size } h=0.1[12 \mathrm{M}]
$$

5. a) Using Euler's method $y^{\prime}=y^{2}+x, y(0)=1$. Find $y(0.1)$ and $y(0.2)$
b) Using Runge - Kutta method of fourth order, compute $\mathrm{y}(0.2)$ from $y^{1}=x y \mathrm{y}(0)=1$, taking $\mathrm{h}=0.2$ [6M]
6. Using R-K method of $4{ }^{\text {th }}$ order, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1$. Find $y(0.2)$ andy (0.4). $\quad[12 \mathrm{M}]$
7. Using R-K method of $4^{\text {th }}$ order find $\mathrm{y}(0.1), \mathrm{y}(0.2)$ and $\mathrm{y}(0.3)$ given that $\frac{d y}{d x}=1+x y, y(0)=2$. [12M]
8. Solve $y^{\prime \prime}-x\left(y^{\prime}\right)^{2}+y^{2}=0$ using R-K method of $4^{\text {th }}$ order for $x=0.2$ given $y(0)=1$,

$$
\operatorname{andy}^{1}(0)=0 \text { taking } \mathrm{h}=0.2
$$

9. Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule.
(ii) using Simpson's $\frac{3}{8}$ rule and compare the result with actual value. $\quad[12 \mathrm{M}]$
10. a) Compute $\int_{0}^{4} e^{x} d x$ by Simpson's $\frac{3}{8}$ rule with 12 sub divisions.
b)Compute $\int_{3}^{7} x^{2} \log x d x$ using Trapezoidal rule andSimpson's $\frac{1}{3}$ rule by taking 10 sub divisions.[6M]

SIDDARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: NUMERICAL METHODS ANDTRANSFORMS (19HS0834)
Branch: B.Tech. (ECE) Year \&Sem: II-B.Tech. \& I-Sem.Regulation: R19

UNIT-III

1. a)Find the Laplace transform of $f(t)=e^{3 t}-2 e^{-2 t}+\sin 2 t+\cos 3 t+\sinh 3 t-2 \cosh 4 t+9$. [6M]
b) Find the Laplace transform of $f(t)=\cosh$ at $\sin b t$
2. a) Find the Laplace transform of $f(t)=\left(\sqrt{t}+\frac{1}{\sqrt{t}}\right)^{3}$.
b) Find the Laplace transform of $f(t)=e^{4 t} \sin 2 t$ cost.
3. a) Find the Laplace transform of $f(t)=t^{2} e^{2 t} \sin 3 t$
b) Find the Laplace transform of $f(t)=\frac{1-\cos a t}{t}$
4.a) Find the Laplace transform of $f(t)=\int_{0}^{t} e^{-t} \cos t d t$.
b) Find the Laplace transform of $f(t)=e^{-4 t} \int_{0}^{t} \frac{\sin 3 t}{t} d t$.
4. a)Show that $\int_{0}^{\infty} t^{2} e^{-4 t} \cdot \sin 2 t d t=\frac{11}{500}$, UsingLaplace transform.
b) UsingLaplace transform, evaluate $\int_{0}^{\infty} \frac{\cos a t-\cos b t}{t} d t$.
5. a) Find $L^{-1}\left\{\frac{3 s-2}{s^{2}-4 s+20}\right\}$ by using first shifting theorem.
b) Find $L^{-1}\left\{\log \left(\frac{s-a}{s-b}\right)\right\}$
6. a) Find $L^{-1}\left\{\frac{1}{\left(s^{2}+5^{2}\right)^{2}}\right\}$,using Convolution theorem.
[6M]
b) Find $L^{-1}\left\{\frac{s^{2}}{\left(s^{2}+4\right)\left(s^{2}+25\right)}\right\}$,using Convolution theorem.
7. a) Find the Inverse Laplace transform of $\frac{1}{s\left(s^{2}+a^{2}\right)}$
b) Find $L^{-1}\left\{s \log \left(\frac{s-1}{s+1}\right)\right\}$
8. Using Laplace transform method to solve $y^{11}-3 y^{1}+2 y=4 t+e^{3 t}$ where $y(0)=1, y^{1}(0)=1 \quad[12 \mathrm{M}]$
9. Solve the D.E. $\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+x=3 t e^{-t}$ usingLaplace Transform given that

$$
\begin{equation*}
x(0)=4 ; \frac{d x}{d t}=0 . a t, t=0 \tag{12M}
\end{equation*}
$$

SIDDARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: NUMERICAL METHODS ANDTRANSFORMS (19HS0834)
Branch: B.Tech. (ECE) Year \&Sem: II-B.Tech. \& I-Sem.Regulation: R19

UNIT - IV

1. a) Obtain the Fourier series expansion of $\mathrm{f}(\mathrm{x})=x^{2}$ in the interval $(0,2 \pi)$.
b) Obtain the Fourier series expansion of $\mathrm{f}(\mathrm{x})=\left(x-x^{2}\right)$ in the interval $[-\pi, \pi]$. Hence show that
$\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}----=\frac{\pi^{3}}{12^{3}}$.
[6M]
2. a) Obtain the Fourier series expansion of $f(x)=(\pi-x)^{2}$ in $0<x<2 \pi$ and deduce that
$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}----=\frac{\pi^{3}}{6}$.
b) Find the Fourier series for the function $f(x)=x$; in $-\pi<x<\pi$.
3. Find a Fourier series to represent the function $f(x)=e^{x}$ for $-\pi<x<\pi$. Andhence derive a series for $\frac{\pi}{\sinh \pi}$.
4. Find the Fourier series to represent the function $f(x)=x^{2}$ for $-\pi<x<\pi$ andhence show that
(i) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}----=\frac{\pi^{n}}{12}$. (ii) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{x}}+\frac{1}{4^{2}}----=\frac{\pi^{n}}{6}$.
(iii) $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}---=\frac{\pi^{x}}{8}$
[12M]
5. a) If $f(x)=|\sin x|$, expand $\mathrm{f}(\mathrm{x})$ as a Fourier series in the interval $(-\pi, \pi)$
[6M]
b) Find the half range cosine series for $f(x)=x$ in the interval $0 \leq x \leq \pi$.
6. Expand the function $f(x)=|x|$ in $-\pi<x<\pi$ as a Fourier series and deduce that

$$
\begin{equation*}
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}----=\frac{\pi^{2}}{8} \tag{12M}
\end{equation*}
$$

7. Find the half range sine series for $f(x)=x(\pi-x)$ in the interval $0 \leq x \leq \pi$ and deduce that

$$
\begin{equation*}
\frac{1}{1^{\mathrm{a}}}-\frac{1}{3^{\mathrm{a}}}+\frac{1}{5^{\mathrm{a}}}-\frac{1}{7^{\mathrm{a}}}---=\frac{\pi^{\mathrm{x}}}{32^{*}} . \tag{12M}
\end{equation*}
$$

8. a) Expand $f(x)=e^{-x}$ as a fourier series in the interval $(-1,1)$.
b) Expand $f(x)=|x|$ as a fourier series in the interval ($-2,2$).
9. a) Find the half range sine series expansion of $f(x)=x^{2}$ when $0<x<4$.
b) Find the half range cosine series expansion of $f(x)=x(2-x)$ in $0 \leq x \leq 2$.
10. Find half range Fourier cosine series of $f(x)=(x-1)^{2}$ in $0<x<1$.

Hence show that

$$
\text { i) } \frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}----=\frac{\pi^{2}}{6}
$$

ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}$.

SIDDARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subjectwith Code: NUMERICAL METHODS ANDTRANSFORMS (19HS0834)
Branch: B.Tech. (ECE)
Year \&Sem: II-B.Tech. \& I-Sem.Regulation: R19

UNIT - V

1. Find the Fourier transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}1 ;|x|<a \\ 0,|x|>a\end{array}\right\}$ and hence evaluate
i) $\int_{-\infty}^{\infty} \frac{\operatorname{sinap} \operatorname{cosp} x}{p} d p$ ii) $\int_{-\infty}^{\infty} \frac{\sin p}{p} d p$ iii) $\int_{0}^{\infty} \frac{\sin p}{p} d p$.
[12M]
2. Find the Fourier transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}a^{2}-x^{2},|x|<a \\ 0,|x|>a>0\end{array}\right\}$ Hence show that $\int_{0}^{\infty} \frac{\sin x-x \cos x}{x^{3}} d x=\frac{\pi}{4}$.
3. a) Find the Fourier transform of $\mathrm{f}(\mathrm{x})=e^{-\frac{x^{2}}{2}},-\infty<x<\infty$
b) If $\mathrm{F}(\mathrm{p})$ is the complex Fourier transform of $\mathrm{f}(\mathrm{x})$, then prove that the complex Fourier transform of $\mathrm{f}(\mathrm{x})=\cos a x$ is $\frac{1}{2}[F(p+a)+F(p-a)]$
4. a) Find the Fourier cosine transform of $\mathrm{f}(\mathrm{x})$ defined by $f(x)=\left\{\begin{array}{cc}\cos x & ; 0<x<a \\ 0 & ; x \geq a\end{array}\right.$
b)If $F(P)$ is the complex Fourier transform of $f(x)$, then prove that the complex Fourier transform of $F\{f(x-a)\}=e^{i p a} \cdot F(P)$
5. Find the Fourier sine and cosine transforms of $\mathrm{f}(\mathrm{x})=\frac{e^{-a x}}{x}$ and deduce that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a x}-e^{-b x}}{x} \sin s x d x=\tan ^{-1}\left(\frac{s}{a}\right)-\tan ^{-1}\left(\frac{s}{b}\right) . \tag{12M}
\end{equation*}
$$

6. Find the Fourier sine and cosine transforms of $\mathrm{f}(\mathrm{x})=e^{-a x}, a>0$ and hence deduce the integrals \quad [12M]
(i) $\int_{0}^{\infty} \frac{p \sin p x}{a^{2}+p^{2}} d p$
(ii) $\int_{0}^{\infty} \frac{\cos p x}{a^{2}+p^{2}} d p$
7. a) Prove that $\mathrm{F}\left[x^{n} \mathrm{f}(\mathrm{x})\right]=(-i)^{n} \frac{d^{n}}{d p^{n}}[F(p)]$
b) Prove that $F_{s}\{\mathrm{xf}(\mathrm{x})\}=-\frac{d}{d p}\left[F_{c}(p)\right]$
8. a) Find the Fourier cosine transform of $e^{-a x} \cos a x, a>0$
b) Find the Fourier cosine transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}x, \text { for } 0<x<1 \\ 2-x, \text { for } 1<x<2 \\ 0, \text { for } x>2\end{array}\right\}$
9. Find the finite Fourier sine and cosine transform of $\mathrm{f}(\mathrm{x})$ defined by $f(x)=2 x$ where $0<x<2 \pi$. [12M]
10.a) Find the finite Fourier sine transform of $\mathrm{f}(\mathrm{x})$, defined by $f(x)=\left\{\begin{array}{l}x, 0 \leq x \leq \frac{\pi}{2} \\ \pi-x, \frac{\pi}{2} \leq x \leq \pi\end{array}\right\}[6 \mathrm{M}]$
b) Find the inverse finite Fourier sine transformof $\mathrm{f}(\mathrm{x})$, If $F_{s}(\mathrm{n})=\frac{16(-1)^{n-1}}{n^{3}}$, where n is a
positiveinteger and $0<x<8$.
[6M]
